声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 2912|回复: 2

[土木工程] 常用结构计算软件与结构概念设计

[复制链接]
发表于 2010-10-10 05:04 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
摘要:随着计算机结构分析软件的广泛应用和普及,它使人们摆脱了过去必须进行的大量的手工计算,使人们的工作效率得以大幅度的提高。与此同时,人们对结构计算软件的依赖性也越来越大,有时甚至过分地相信计算软件,而忽略了结构概念设计的重要性。
关键词:常用 结构计算 软件 概念设计
1、结构计算软件的局限性、适用性和近似性。

  随着计算机结构分析软件的广泛应用和普及,它使人们摆脱了过去必须进行的大量的手工计算,使人们的工作效率得以大幅度的提高。与此同时,人们对结构计算软件的依赖性也越来越大,有时甚至过分地相信计算软件,而忽略了结构概念设计的重要性。由于种种原因,目前的结构计算软件总是存在着一定的局限性、适用性和近似性,并非万能。如:结构的模型化误差;非结构构件对结构刚度的影响;楼板对结构刚度的影响;温度变化在结构构件中产生的应力;结构的实际阻尼(比);回填土对地下室约束相对刚度比;地基基础和上部结构的相互作用等等。有些影响因素目前还无法给出准确的模型描述,也只能给出简化的表达或简单的处理,受人为影响较大。加之,建筑体型越来越复杂,这就对结构计算软件提出了更高的要求,而软件本身往往又存在一定的滞后性。正是因为如此,结构工程师应对所用计算软件的基本假定、力学模型及其适用范围有所了解,并应对计算结果进行分析判断确认其正确合理、有效后方可用于工程设计。

2、现阶段常用的结构分析模型

  实际结构是空间的受力体系,但不论是静力分析还是动力分析,往往必须采取一定的简化处理,以建立相应的计算简图或分析模型。目前,常用的结构分析模型可分为两大类:第一类为平面结构空间协同分析模型;另一类为三维空间有限元分析模型。
1) 平面结构空间协同分析模型。将结构划分若干片正交或斜交的平面抗侧力结构,但对任意方向的水平荷载和水平地震作用,所有正交或斜交的抗侧力结构均参与工作,并按空间位移协调条件进行水平力的分配。楼板假定在其自身平面内刚度无限大。这一分析模型目前已经很少采用。其主要适用于平面布置较为规则的框架结构、框-剪结构、剪力墙结构等。
2) 三维空间有限元分析模型。将建筑结构作为空间体系,梁、柱、支撑均采用空间杆单元,剪力墙单元模型目前国内有薄壁杆件模型、空间膜元模型、板壳单元模型以及墙组元模型。楼板可假定为弹性,也可假定在其自身平面内刚度无限大,还可假定楼板分块无限刚。该模型以节点位移为未知量,由矩阵位移法形成线性方程组求解。

3、常用结构计算软件

  多、高层结构的基本受力构件有柱、梁、支撑、剪力墙和楼板。柱、梁及支撑均为一维构件,可用空间杆单元来模拟其受力状态。空间杆单元的每个端点有6个自由度,即3个平动自由度和3个转角自由度。对一维构件,各种有限元分析软件对这类构件的模型化假定差异不大。剪力墙和普通楼板均为二维构件,这两种构件的模型化假定是关键,它直接决定了多、高层结构分析模型的科学性,同时也决定了软件分析结果的精度和可信度。目前国内外流行的几个结构计算软件对剪力墙和楼板的模型化假定差异较大。现进行分述。

3.1 TAT结构计算软件
  TAT是由中国建筑科学研究院开发的建筑结构专用软件,采用菜单操作,图形化输入几何数据和荷载数据。程序对剪力墙采用开口薄壁杆件模型,并假定楼板在平面内刚度无限大,平面外刚度为零。这使得结构的自由度大为减少,计算分析得到一定程度的简化,从而大大提高了计算效率。薄壁杆件模型采用开口薄壁杆件理论,将整个平面联肢墙或整个空间剪力墙模拟为开口薄壁杆件,每个杆件有两个端点,每个端点有7个自由度,前6个自由度的含义与空间杆单元相同,第7个自由度是用来描述薄壁杆件截面翘曲的。开口薄壁杆件模型的基本假定为:
1) 在线弹性条件下,杆件截面外形轮廓线在其自身平面内保持不变,在平面外可以翘曲,同时忽略其剪切变形的影响。这一假定实际上增大了结构的刚度,薄壁杆件单元及其墙肢越多,则结构刚度增大的程度越高。
2) 将同一层彼此相连的剪力墙墙肢作为一个薄壁杆件单元,将上下层剪力墙洞口之间的部分作为连梁单元。这一假定将实际结构中连梁对墙肢的线约束简化为点约束,削弱了连梁对墙肢的约束,从而消弱了结构的刚度。连梁越多,连梁的高度越大,则结构刚度消弱越大。
3) 引入楼板在其自身平面内刚度无限大,而平面外刚度为零的假定。
实际工程中许多布置复杂的剪力墙难以满足薄壁杆件模型的基本假定,从而使计算结果难以满足工程设计的精度要求。
1) 变截面的剪力墙:在平面布置复杂的建筑结构中,常存在薄壁杆件交叉连接、彼此相连的薄壁杆件截面不同,甚至差异较大的情况。由于这些薄壁杆件的扇形坐标不同,其翘曲角的含义也不同,因而由截面翘曲而引起的纵向位移不易协调,会导致一定的计算误差。
2) 长墙、矮墙:由于薄壁杆件模型不考虑剪切变形的影响,而长墙、矮墙是以剪切变形为主的构件,其几何尺寸也难以满足薄壁杆件的基本要求,采用薄壁杆件理论分析这些剪力墙时,存在着较大的模型化误差。
3) 多肢剪力墙:薄壁杆件模型的一个基本假定就是认为杆件截面外形轮廓线在自身平面内保持不变,在墙肢较多的情况下,该假定会导致较大误差。
4) 框支剪力墙:框支剪力墙和转换梁在其交接面上是线变形协调的,而采用薄壁杆件理论分析框支墙时,由于薄壁杆件是以点传力的,作为一个薄壁杆件的框支墙只有一点和转换梁的某点是变形协调的,这必然会带来较大的计算误差。
5) 框架梁与剪力墙的连接:在一般情况下和剪力墙垂直相连的框架梁,其受剪力墙的约束并不强,梁这一端的弯矩一般并不大,但用薄壁杆件理论分析剪力墙时,梁要通过刚臂与薄壁杆件的剪心相连,其结果是强化了剪力墙对梁端的嵌固作用,使梁端弯矩的计算值偏大。
6) 柱、墙上下偏心:程序将自动在上(薄壁) 柱的下端加一水平刚域,刚域的存在对结构整体刚度有较大的影响。
7) 对悬挑剪力墙、无楼板约束的剪力墙等也不适合采用薄壁杆件单元计算。
  TAT软件适合于框架、框架- 剪力墙、剪力墙及筒体结构,但应用时应根据结构的实际情况对剪力墙进行处理以减小计算误差。
1) 剪力墙的输入处理:对长度超过8m的剪力墙和多肢剪力墙应在适当的位置,按照使每个薄壁柱的刚度尽量均匀的原则人为设置计算洞口,这样可使薄壁柱的受力更符合实际。当洞口较小时,在实际施工时按无洞处理。
2) 剪力墙洞口的处理:因为TAT采用薄壁柱模型,每层薄壁柱上下各有一个节点与上下层的柱、薄壁柱或无柱节点相连,通过这样的连系将上下层力传递计算,当上下层洞口不对齐时,由于洞口会切割一个薄壁柱为2个或更多,造成上下层节点不一一对应,使上下层传力混乱,这时应采用简化的方法进行处理。剪力墙洞口一般分对齐、开通、忽略三种处理方法。
3) 框支剪力墙的处理:对于框支剪力墙,用薄壁柱模拟的剪力墙就有个传力问题,上部薄壁柱只能传力给下面一个点,而下部往往是由多个点来支撑上部剪力墙的,这时应对框支梁上部的剪力墙进行离散化处理,将计算产生的误差控制在局部平面内,这样才能在结构的整体分析中得到一个比较满意的结果,然后再利用高精度平面有限元程序对关键部位进行细致的内力分析。
  TBSA 也是由中国建筑科学研究院开发的多、高层建筑的结构专用程序,其计算模型和原理与TAT相似,这里不再赘述。

3.2 SATWE结构计算软件
  SATWE 是专门为多、高层建筑结构分析与设计而研制的空间结构有限元分析软件,适用于各种复杂体型的高层钢筋混凝土框架、框剪、剪力墙、筒体结构等,也适用于混凝土- 钢混合结构和高层钢结构。
  SATWE是用墙元来模拟剪力墙。SATWE中的墙元是在板壳单元的基础上构造出的一种通用墙元,它采用静力凝聚原理将由于墙元的细分而增加的内部自由度消去,将其刚度凝聚到边界节点上,从而保证了墙元的精度和有限的出口自由度,而且墙元的每个节点都具有空间全部6个自由度,可以方便地与任意空间梁、柱单元连接,而无需任何附加约束,同时也降低了剪力墙的几何描述和板壳单元划分的难度,提高了分析效率。板壳单元是目前模拟剪力墙的最理想单元,SATWE选用这一单元并对墙元的细分和墙上开洞作了自动化处理。
  板壳单元模型的主要特点是用每一节点6个自由度的壳元来模拟剪力墙单元。剪力墙既有平面内刚度,又有平面外刚度,楼板既可以按弹性考虑,也可按刚性板考虑,这是一种接近实际情况的模型。该模型的特点是:
1) 具有平面内、外刚度,可与空间任何构件连接,较好地反映剪力墙真实受力状态,其刚度与实际刚度较为一致。
2) 通过静力凝聚形成的墙元来模拟剪力墙,解决了剪力墙模型化的问题。
3) 允许剪力墙洞口不对齐,适用于较复杂的结构,较真实地分析出剪力墙的内力和变形。
4) 结构自由度数目增多,计算工作量增加,计算效率有所降低。
  SATWE 在对楼板的处理上采用了四种不同的假定:
1) 假定楼板整体平面内无限刚;
2) 假定楼板分块平面内无限刚;
3) 假定楼板分块平面内无限刚,并带有弹性连接板带;
4) 假定楼板为弹性板。
  为提高计算效率,在保证一定的分析精度的前提下,针对不同类型的工程,采用不同的楼板假定。
  在使用SATWE软件时,值得注意的有两点:
1) 墙元的划分并非越细越好。当墙元划分过细时,由于单元有一定的厚度,当单元的长、宽与单元的厚度比较接近时,墙单元就不能再作为墙单元计算。
2) 在地震作用分析时,程序对振型分解法提供了两种解法:总刚分析方法和侧刚分析方法。两者的主要区别在于对墙元侧向节点自由度的处理上,前者将其作为子结构出口自由度,参加总刚的集成,后者将其作为子结构的内部自由度,在单元计算阶段就凝聚掉,这就造成墙元之间的变形不协调,使之在变形的过程中可以自由开裂,使得计算出的结构刚度偏小,尤其在采用弹性楼板假定以及错层结构中会产生较大的误差。

3.3 ETABS 软件
  ETABS 软件是由美国Berkeley地震工程研究中心开发的高层建筑三维专用有限元分析软件,其特点是采用空间杆单元模拟梁、柱、支撑构件,采用膜元模型来模拟剪力墙,楼板可采用平面内无限刚假定、分块无限刚假定和弹性假定。膜元模型是把无洞口或有较小洞口的一片剪力墙简化为一个墙板单元,把有较大洞口的一片剪力墙简化为一个由墙板单元和连梁组成的墙板-梁体系,即把洞口两侧部分作为两个墙板单元,上、下层剪力墙洞口之间部分作为一根连梁。墙板单元由膜单元+边梁+边柱组成,膜单元只有墙平面内的抗弯、抗剪和抗压刚度,平面外刚度为零;边梁为一种特殊的刚性梁,在墙平面内的抗弯、抗剪和轴向刚度无限大,垂直于墙平面的抗弯、抗剪和抗扭刚度为零;边柱的作用为等效替代剪力墙的平面外刚度,边柱可能是实际工程中的一根柱,也可能是人为虚拟的柱。膜元模型使得剪力墙的几何描述和前处理工作得到了简化,解决了剪力墙单元划分的难题,结构自由度有所减少,分析效率也得到了一定的提高,位移的协调性介于薄壁杆件模型和有限元模型之间,分析结果也较薄壁杆件模型更合理。
  膜元模型的不足之处主要是:膜元模型中是按“柱线”来把剪力墙划分为一个个墙板单元的,为了使上、下层之间的墙板单元角点变形协调,模型要求整个结构从上到下“柱线”对齐、贯通。对于复杂工程,特别是当剪力墙洞口上下不对齐、不等宽以及各层与剪力墙搭接的梁平面位置有变化时,将导致“柱线”又多又密,这不仅会增加许多墙板单元,增加计算量,更重要的是会使许多墙板单元变得又细又长,单元的几何比例不当,造成墙板单元刚度奇异,使分析结果失真。此外,将剪力墙洞口间部分模型化为一个梁单元,削弱了实际结构中连梁对墙肢的约束,其结果是结构整体计算的分析结果偏柔,这一点与TAT计算软件相似。
  事实上,ETABS 采用空间协同工作体系,因此是准三维分析程序。其主要优点是针对建筑结构的特点进行编制,使用起来比较方便。不足之处是它并非完全三维空间分析程序,协同工作假定带来一定的计算误差,同时,对剪力墙的模型化假定也使得ETABS分析结果偏柔。
2003年10月,由中国建筑设计研究院标准所和美国CSI公司联合推出符合中国规范的ETABSV8中文版,为我国的结构计算软件市场注入了新的活力。ETABS 软件功能十分强大,除了可以进行线性静、动力反应分析外,还可以进行非线性静、动力反应分析、推覆分析和P - Δ效应分析等。

3.4 SAP2000 软件
  20世纪70年代初,美国Willson 教授等人编制了结构通用有限元分析程序SAP5,该软件在国际上得到了极其广泛的应用。经过二十多年的发展和完善,90 年代中期,Willson 教授等人将美国、加拿大和新西兰等国的设计规范和常用设计材料的特性编入程序,根据计算分析结果,直接进行下一步设计,推出了被称为21世纪的结构分析与设计程序SAP2000。该软件以空间杆单元模拟梁、柱、支撑,以壳元模拟剪力墙。可以进行线性静、动力反应分析,也可以进行非线性静、动力反应分析、推覆分析和P - Δ效应分析等。但SAP2000因其价格昂贵、前后处理工作量大且与我国规范不相符合等原因,在我国的应用和推广受到一定的制约。

评分

1

查看全部评分

回复
分享到:

使用道具 举报

 楼主| 发表于 2010-10-10 05:04 | 显示全部楼层
4、从整体上把握结构的各项性能

  由于结构计算软件存在着一定的适用性、局限性和近似性,在计算输出的结果中可能存在部分构件或部位内力异常的情况,尤其是对于复杂结构。这时,不能据此来否定分析软件的正确性,更不能对异常构件、部位置之不理或偏信于计算机的结果,而是应该从整体上来把握和控制结构体系的各项性能,对内力异常的构件或部位,应从明确的结构概念出发来分析和处理,从而确保结构的安全性、经济性、合理性。
1) 剪重比控制:剪重比指结构任一楼层的水平地震剪力与该层及其上各层总重力荷载代表值的比值,一般是指底层水平剪力与结构总重力荷载代表值之比。它在某种程度上反映了结构的刚柔程度。剪重比应在一个比较合理的范围内,以保证结构整体刚度的适中。剪重比太小,说明结构整体刚度偏柔,水平荷载或水平地震作用下将产生过大的水平位移或层间位移;剪重比太大,说明结构整体刚度偏刚,会引起很大的地震内力,不经济。
2) 位移比控制:位移比是指楼层的最大弹性水平位移(或层间位移)与该楼层两端弹性水平位移(或层间位移)的平均值之比。位移比的大小是反映结构平面规则与否的重要依据,它侧重控制的是结构侧向刚度与扭转刚度之间的一种相对关系,而非其绝对大小,它的目的是使结构抗侧力构件的布置更有效、更合理。
3) 周期比控制:周期比是指结构扭转为主的第一周期Tt与平动为主的第一周期T1 的比值,其主要目的是控制结构在地震作用下的扭转效应。周期比实际上反映了结构的扭转刚度和侧向刚度之间的一种对应关系,同时也反映了结构抗侧力构件布置的合理性和有效性。
4) 层刚度比控制:我国的“抗震规范”和“高规”均对结构的楼层侧向刚度比作出了规定,其主要目的是为了保证结构竖向刚度变化的均匀性,防止出现刚度突变的情况。层刚度比较直观地反映了结构楼层侧向刚度沿竖向分布的均匀程度,它是衡量结构竖向规则与否的重要标志。

5、抗震概念设计的一些重要准则

  抗震分析是建筑结构计算分析的一个重要方面,由于地震作用的不确定因素太多,仅凭计算分析是不能保证结构安全的,抗震概念设计就成为抗震设计的一个重要组成部分,它应该贯穿于结构计算分析和细部构造的全过程。抗震设计应符合以下原则:
1) 应具有明确的计算简图和合理的地震作用传递途径。
2) 对可能出现的薄弱部位,应采取措施提高抗震能力。
3) 应避免因部分结构或构件的破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。
4) 结构应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。
5) 宜具有合理的刚度和承载力分布,避免因局部削弱或突变形成薄弱部位,产生过大的应力集中或塑性变形集中。
6) 结构在两个主轴方向的动力特性宜接近。
7) 采用有效的措施防止过早的剪切、锚固和受压等脆性破坏,因此采用“约束混凝土”是非常重要的措施。
8) 在地震作用下节点的承载力应大于相连构件的承载力。当构件屈服、刚度退化时,节点应能保持承载力和刚度不变。

6、结 语

1)根据建筑结构的特点,选择合适的结构计算软件,并应了解软件的基本假定、计算模型和适用范围。
2) 根据结构计算模型的特点,对实际结构采取必要的技术处理,使计算模型和实际结构尽可能地接近,以满足工程设计精度的要求。
3) 概念设计是结构设计的核心和灵魂,它统领结构设计的全过程。运用结构概念设计从整体上把握结构的各项性能,这样才能对计算分析结果进行科学的判断、合理的采用。

转自:结构工程论坛
发表于 2010-10-19 10:33 | 显示全部楼层
有同感,我也感觉现在概念设计方面有很大的空白和断档!
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-11-17 16:42 , Processed in 0.058077 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表