声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 3417|回复: 2

[经典算法] 请问谁有粒子群算法在TSP问题上的应用源码

[复制链接]
发表于 2008-9-2 16:05 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
请问谁有粒子群算法在TSP问题上的应用源码,最好有详细的注释,因为我初学呢!我在做粒子群算法优化路由方面的研究,有兴趣的朋友一起交流啊!我的QQ42057388,邮箱:caojun241@sina.com
回复
分享到:

使用道具 举报

发表于 2008-9-5 09:19 | 显示全部楼层
下面是一个C语言写的例子

  1. #include <stdlib.h>
  2. #include "..\\Utils.h"
  3. #include "..\\TSPDataSet.h"
  4. #include "PSO.h"
  5. static void PSO_MendCycle( TParticle *Particle )
  6. {
  7.     int tLooper1, tLooper2;
  8. int HasFound;
  9. tLooper1 = 1;
  10. while( tLooper1 < Particle->Dimension )
  11. {
  12.   //查找是否有重复节点
  13.   HasFound = 0;
  14.   for( tLooper2=0; tLooper2<tLooper1; tLooper2++ )
  15.   {
  16.    if( Particle->X[ tLooper2 ] == Particle->X[ tLooper1 ] )
  17.    {
  18.     HasFound = 1;
  19.     break;
  20.    }
  21.   }
  22.   if( HasFound == 1 )
  23.   {
  24.    Particle->X[ tLooper1 ] = ( Particle->X[ tLooper1 ] + 1 ) % Particle->Dimension;
  25.   }
  26.   else
  27.   {
  28.    tLooper1++;
  29.   }
  30. }
  31. }
  32. //适合度计算方法,必须定义
  33. static double PSO_GetFit( CTSPDataSet *dat, TParticle *Particle )
  34. {
  35. int tResult = 0;
  36. tResult = dat->GetCycleLength( Particle->Dimension, Particle->X );
  37. return (double)tResult;
  38. }
  39. //计算群体各个微粒适合度
  40. static void PSO_CalFit( CTSPDataSet *dat, TPSO *PSO )
  41. {
  42. if(!PSO)
  43. {
  44.   return;
  45. }
  46. for(int i=0; i<PSO->PNumber; i++)
  47. {
  48.   PSO->Particle[i].Fitness = PSO_GetFit( dat, &(PSO->Particle[i]));
  49. }
  50. }
  51. //初始化数据
  52. static void PSO_InitializeData( CTSPDataSet *dat, TPSO *PSO, int PNumber, int PDimension )
  53. {
  54. if(!PSO)
  55. {
  56.   return;
  57. }
  58. static int kk=(unsigned)time(NULL);
  59. srand((unsigned)time(NULL)+kk++);
  60. PSO->GBestIndex = 0;
  61. for(int i=0; i<PNumber; i++)
  62. {
  63.   for(int j=0; j<PSO->Particle[i].Dimension; j++)
  64.   {
  65.    PSO->Particle[i].X[j] = (int)(rand()/(double)RAND_MAX*(PSO->Xup[j]-PSO->Xdown[j])+PSO->Xdown[j]);//初始化坐标
  66.    PSO->Particle[i].Velocity[j] = rand()/(double)RAND_MAX*PSO->Vmax[j]-PSO->Vmax[j]/2;//初始化速度
  67.   }
  68.   PSO_MendCycle(&(PSO->Particle[i]));
  69.   for(j=0; j<PSO->Particle[i].Dimension; j++)
  70.   {
  71.    PSO->Particle[i].XBest[j] = PSO->Particle[i].X[j];
  72.   }
  73.   PSO->Particle[i].Fitness = PSO_GetFit( dat, &(PSO->Particle[i])); //计算该微粒适合度
  74.   PSO->Particle[i].FitnessBest = PSO->Particle[i].Fitness; //设最优适合度初值
  75.   if(PSO->Particle[i].Fitness<PSO->Particle[PSO->GBestIndex].Fitness)
  76.   {
  77.    PSO->GBestIndex = i;//查找群体最优微粒
  78.   }
  79. }
  80. }
  81. //初始化数据结构
  82. static PSO_InitializeDataStruce( TPSO *PSO, int PNumber, int PDimension )
  83. {
  84. int tLooper;
  85. PSO->GBestIndex = -1;
  86. PSO->PNumber = PNumber;
  87. PSO->PDimension = PDimension;
  88. PSO->Xup = CC_SAFE_MALLOC( PDimension, int );
  89. PSO->Xdown = CC_SAFE_MALLOC( PDimension, int );
  90. for( tLooper=0; tLooper<PDimension; tLooper++ )
  91. {
  92.      PSO->Xup[ tLooper ] = PDimension - 1;
  93.   PSO->Xdown[ tLooper ] = 0;
  94. }
  95. PSO->Vmax = CC_SAFE_MALLOC( PDimension, double );
  96. for( tLooper=0; tLooper<PDimension; tLooper++ )
  97. {
  98.      PSO->Vmax[ tLooper ] = ( PSO->Xup[ tLooper ] - PSO->Xdown[ tLooper ] ) * VelocityCoefficent;
  99. }
  100. PSO->Particle = CC_SAFE_MALLOC( PNumber, TParticle );
  101. for( tLooper=0; tLooper<PNumber; tLooper++ )
  102. {
  103.      PSO->Particle[ tLooper ].Dimension = PDimension;
  104.   PSO->Particle[ tLooper ].X = CC_SAFE_MALLOC( PDimension, int );
  105.   PSO->Particle[ tLooper ].Velocity = CC_SAFE_MALLOC( PDimension, double );
  106.   PSO->Particle[ tLooper ].XBest = CC_SAFE_MALLOC( PDimension, int );
  107.   PSO->Particle[ tLooper ].Fitness = -1;
  108.   PSO->Particle[ tLooper ].FitnessBest = -1;
  109. }
  110. }
  111. static void PSO_ReleaseDataStructure( TPSO *PSO )
  112. {
  113. int tLooper;
  114. for( tLooper=0; tLooper<PSO->PDimension; tLooper++ )
  115. {
  116.   CC_FREE( PSO->Particle[ tLooper ].XBest, int );
  117.   CC_FREE( PSO->Particle[ tLooper ].Velocity, double );
  118.   CC_FREE( PSO->Particle[ tLooper ].X, int );
  119. }
  120. CC_FREE( PSO->Particle, TParticle );
  121. CC_FREE( PSO->Vmax, double );
  122. CC_FREE( PSO->Xdown, int );
  123. CC_FREE( PSO->Xup, int );
  124. }
  125. //微粒飞翔,产生新一代微粒
  126. static void PSO_ParticleFly( CTSPDataSet *dat, TPSO *PSO )
  127. {
  128. static double FitBak[100];
  129. if(!PSO)
  130. {
  131.   return;
  132. }
  133. static int tt=(unsigned)time(NULL);
  134. srand((unsigned)time(NULL)+tt++);
  135. //整个群体飞向新的位置
  136. for(int i=0; i<PSO->PNumber; i++)
  137. {
  138.   //处理速度
  139.   for(int j=0; j<PSO->Particle[i].Dimension; j++)
  140.   {
  141.    double tTemp;
  142.    tTemp = (PSO->Particle[i]).Velocity[j];
  143.    //tTemp = WEIGHT * tTemp;
  144.    tTemp += rand()/(double)RAND_MAX*C1*(PSO->Particle[i].XBest[j]-PSO->Particle[i].X[j]);
  145.    tTemp += rand()/(double)RAND_MAX*C2*(PSO->Particle[PSO->GBestIndex].XBest[j]-PSO->Particle[i].X[j]);
  146.    (PSO->Particle[i]).Velocity[j] = tTemp;
  147.   }
  148.   //检查速度最大值
  149.   for(j=0; j<PSO->Particle[i].Dimension; j++)
  150.   {
  151.    if(PSO->Particle[i].Velocity[j]>PSO->Vmax[j])
  152.    {
  153.     PSO->Particle[i].Velocity[j] = PSO->Vmax[j];
  154.    }
  155.    if(PSO->Particle[i].Velocity[j]<-PSO->Vmax[j])
  156.    {
  157.     PSO->Particle[i].Velocity[j] = -PSO->Vmax[j];
  158.    }
  159.   }
  160.   //粒子飞翔
  161.   for(j=0; j<PSO->Particle[i].Dimension; j++)
  162.   {
  163.    //修改坐标
  164.    PSO->Particle[i].X[j] = (int)(PSO->Particle[i].Velocity[j] + PSO->Particle[i].X[j]) % PSO->Xup[j];
  165.    //保护
  166.    if(PSO->Particle[i].X[j]>PSO->Xup[j])
  167.    {
  168.     PSO->Particle[i].X[j]=PSO->Xup[j];
  169.    }
  170.    if(PSO->Particle[i].X[j]<PSO->Xdown[j])
  171.    {
  172.     PSO->Particle[i].X[j]=PSO->Xdown[j];
  173.    }
  174.   }
  175.   //对粒子飞翔后产生的新的个体进行修复
  176.   PSO_MendCycle( &(PSO->Particle[i]) );
  177. }
  178. //计算各微粒适合度
  179. PSO_CalFit( dat, PSO );
  180. for(i=0; i<PSO->PNumber; i++)
  181. {
  182.   FitBak[i] = PSO->Particle[i].Fitness;
  183. }
  184. //设置新的个体最好位置
  185. for(i=0; i<PSO->PNumber; i++)
  186. {
  187.   if(PSO->Particle[i].Fitness<=PSO->Particle[i].FitnessBest)
  188.   {
  189.    PSO->Particle[i].FitnessBest = PSO->Particle[i].Fitness;
  190.    for(int j=0; j<PSO->Particle[i].Dimension; j++)
  191.    {
  192.     PSO->Particle[i].XBest[j] = PSO->Particle[i].X[j];
  193.    }
  194.   }
  195. }

  196. //设置新的最优个体
  197. PSO->GBestIndex = 0;
  198. for(i=0; i<PSO->PNumber; i++)
  199. {
  200.   if(PSO->Particle[i].FitnessBest<=PSO->Particle[PSO->GBestIndex].FitnessBest && i!=PSO->GBestIndex)
  201.   {
  202.    PSO->GBestIndex = i;
  203.   }
  204. }
  205. }
  206. //返回最佳个体
  207. static void PSO_GetBest( TPSO *PSO, int *elist )
  208. {
  209. for(int i=0; i<PSO->Particle[PSO->GBestIndex].Dimension; i++)
  210. {
  211.   elist[i*2] = PSO->Particle[PSO->GBestIndex].XBest[i];
  212.   elist[i*2+1] = PSO->Particle[PSO->GBestIndex].XBest[(i+1)%PSO->Particle[PSO->GBestIndex].Dimension];
  213. }
  214. }
  215. //主程序
  216. void PSO_Main( CTSPDataSet *dat, int PSONumber, int ecount, int *elist )
  217. {
  218. TPSO *PSO;
  219. int counter=0;
  220. PSO = CC_SAFE_MALLOC( 1, TPSO );
  221. PSO_InitializeDataStruce( PSO, 20, ecount );
  222.     PSO_InitializeData( dat, PSO, 20, ecount );
  223. do
  224. {
  225.   PSO_ParticleFly( dat, PSO );
  226.   counter++;
  227. } while ( counter<PSONumber );
  228. PSO_GetBest( PSO, elist );
  229. PSO_ReleaseDataStructure( PSO );
  230. CC_FREE( PSO, TPSO );
  231. }
复制代码


来自于:http://blog.sina.com.cn/s/blog_48efb3e7010002sf.html
发表于 2015-12-25 15:03 | 显示全部楼层
挺好的
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2025-1-26 11:37 , Processed in 0.104468 second(s), 19 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表