马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?我要加入
x
信号处理中,通常都会涉及到时域和频域的概念: 时域即时间域,自变量是时间,即横轴是时间,纵轴是信号的变化。其动态信号x(t)是描述信号在不同时刻取值的函数。这和我们平时所讨论的函数概念类似。
频域即频率域,自变量是频率,即横轴是频率,纵轴是该频率信号的幅度,也就是通常说的频谱图。频谱图描述了信号的频率结构及频率与该频率信号幅度的关系。频域是把时域波形的表达式做傅立叶变化得到复频域的表达式,所画出的波形就是频谱图。是描述频率变化和幅度变化的关系。
对信号进行时域分析时,有时一些信号的时域参数相同,但并不能说明信号就完全相同。比如具有相同函数结构的两个信号可能并不相同,因为信号不仅随时间变化,还与频率、相位等信息有关,这就需要进一步分析信号的频率结构,并在频率域中对信号进行描述。
动态信号从时间域变换到频率域主要通过傅立叶级数和傅立叶变换实现。周期信号靠傅立叶级数,非周期信号靠傅立叶变换。很简单时域分析的函数是参数是t,也就是y=f(t),频域分析时,参数是w,也就是y=F(w)两者之间可以互相转化。时域函数通过傅立叶或者拉普拉斯变换就变成了频域函数。
信号通过系统,在时域中表现为卷积,而在频域中表现为相乘。 无论是傅立叶变换还是小波变换,其实质都是一样的,既:将信号在时间域和频率域之间相互转换,从看似复杂的数据中找出一些直观的信息,再对它进行分析。由于信号往往在频域比有在时域更加简单和直观的特性,所以,大部分信号分析的工作是在频域中进行的。音乐——其实就是时/频分析的一个极好例子,乐谱就是音乐在频域的信号分布,而音乐就是将乐谱变换到时域之后的函数。从音乐到乐谱,是一次傅立叶或小波变换;从乐谱到音乐,就是一次傅立叶或小波逆变换。 傅里叶变换可以将一个时域信号转换成在不同频率下对应的振幅及相位,其频谱就是时域信号在频域下的表现,而反傅里叶变换可以将频谱再转换回时域的信号。 以信号为例,信号在时域下的图形可以显示信号如何随着时间变化,而信号在频域下的图形(一般称为频谱)可以显示信号分布在哪些频率及其比例。频域的表示法除了有各个频率下的大小外,也会有各个频率的相位,利用大小及相位的资讯可以将各频率的弦波给予不同的大小及相位,相加以后可以还原成原始的信号。 转自:http://blog.sina.com.cn/s/blog_6419abc70100x8uh.html
|