声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 1515|回复: 0

[图像处理] 请教各位大神关于ICP(迭代最近点算法)的问题

[复制链接]
发表于 2013-3-13 09:02 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
目前所知的ICP代码都是把两个模型的所有数据传入,计算旋转矩阵和平移向量,然后对前后模型进行匹配。如果已知三对初始对应点,该怎么改代码实现通过这三对初始对应点使前后模型匹配?代码如下
function [R, t, corr, error, data2] = icp2(data1, data2, res, tri)

% [R, t, corr, error, data2] = icp2(data1, data2, res, tri)
%
% This is an implementation of the Iterative Closest Point (ICP) algorithm.
% The function takes two data sets and registers data2 with data1. It is
% assumed that data1 and data2 are in approximation registration. The code
% iterates till no more correspondences can be found.
%
% This is a modified version (12 April, 2005). It is more accurate and has
% less chances of getting stuck in a local minimum as opposed to my earlier
% version icp.m
%
% Arguments: data1 - 3 x n matrix of the x, y and z coordinates of data set 1
%            data2 - 3 x m matrix of the x, y and z coordinates of data set 2
%            res   - the tolerance distance for establishing closest point
%                     correspondences. Normally set equal to the resolution
%                     of data1
%            tri   - optional argument. obtained by tri = delaunayn(data1');
%
% Returns: R - 3 x 3 accumulative rotation matrix used to register data2
%          t - 3 x 1 accumulative translation vector used to register data2
%          corr - p x 3 matrix of the index no.s of the corresponding points of
%                 data1 and data2 and their corresponding Euclidean distance
%          error - the mean error between the corresponding points of data1
%                  and data2 (normalized with res)
%          data2 - 3 x m matrix of the registered data2
%
figure(1),plot3(data1(1,:),data1(2,:),data1(3,:),'r.',data2(1,:),data2(2,:),data2(3,:),'c.'),hold off;
maxIter = 30;
c1 = 0;
c2 = 1;
R = eye(3);
t = zeros(3,1);
if nargin < 4
    tri = delaunayn(data1');
end

n = 0;
while c2 ~= c1
    c1 = c2;
    [corr, D] = dsearchn(data1', tri, data2');
    corr(:,2:3) = [[1 : length(corr)]' D];   
    corr(find(D>2*res),:) = [];%去除异常点

    corr = -sortrows(-corr,3);
    corr = sortrows(corr,1);
    [B, Bi, Bj] = unique(corr(:,1));
    corr = corr(Bi,:);

    [R1, t1] = reg(data1, data2, corr);
    data2 = R1*data2;
    data2 = [data2(1,:)+t1(1); data2(2,:)+t1(2); data2(3,:)+t1(3)];
    R = R1*R;
    t = R1*t + t1;   
    c2 = length(corr);        
    n = n + 1;
    if n > maxIter
        break;
    end
end

e1 = 1000001;
e2 = 1000000;
n = 0;
noChangeCount = 0;
while noChangeCount < 10
    e1 = e2;
    [corr, D] = dsearchn(data1', tri, data2');
    corr(:,2:3) = [[1 : length(corr)]' D];   
    corr(find(D>2*res),:) = [];

    corr = -sortrows(-corr,3);
    corr = sortrows(corr,1);
    [B, Bi, Bj] = unique(corr(:,1));
    corr = corr(Bi,:);

    [R1 t1] = reg(data1, data2, corr);
    data2 = R1*data2;
    data2 = [data2(1,:)+t1(1); data2(2,:)+t1(2); data2(3,:)+t1(3)];   
    R = R1*R;
    t = R1*t + t1;   
    e2 = sum(corr(:,3))/(length(corr)*res);

    n = n + 1;
    if n > maxIter        
        break;
    end
    if abs(e2-e1)<res/10000
        noChangeCount = noChangeCount + 1;
    end
end
error = min(e1,e2);
figure(2),plot3(data1(1,:),data1(2,:),data1(3,:),'r.',data2(1,:),data2(2,:),data2(3,:),'b.'),hold off;%新加的
%-----------------------------------------------------------------
function [R1, t1] = reg(data1, data2, corr)
n = length(corr);
M = data1(:,corr(:,1));
mm = mean(M,2);
S = data2(:,corr(:,2));
ms = mean(S,2);
Sshifted = [S(1,:)-ms(1); S(2,:)-ms(2); S(3,:)-ms(3)];
Mshifted = [M(1,:)-mm(1); M(2,:)-mm(2); M(3,:)-mm(3)];
K = Sshifted*Mshifted';
K = K/n;
[U A V] = svd(K);
R1 = V*U';
if det(R1)<0
    B = eye(3);
    B(3,3) = det(V*U');
    R1 = V*B*U';
end
t1 = mm - R1*ms;

回复
分享到:

使用道具 举报

您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-11-17 17:35 , Processed in 0.062524 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表