声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 4902|回复: 2

[Maple] 矩阵的类型以及transpose的用法?

[复制链接]
发表于 2012-11-10 19:38 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
> with(VectorCalculus);
[&x, *, +, -, ., `<,>`, `<|>`, About, AddCoordinates, ArcLength,

  BasisFormat, Binormal, Compatibility, ConvertVector,

  CrossProduct, Curl, Curvature, D, Del, DirectionalDiff,

  Divergence, DotProduct, Flux, GetCoordinateParameters,

  GetCoordinates, GetNames, GetPVDescription, GetRootPoint,

  GetSpace, Gradient, Hessian, IsPositionVector, IsRootedVector,

  IsVectorField, Jacobian, Laplacian, LineInt, MapToBasis, Nabla,

  Norm, Normalize, PathInt, PlotPositionVector, PlotVector,

  PositionVector, PrincipalNormal, RadiusOfCurvature,

  RootedVector, ScalarPotential, SetCoordinateParameters,

  SetCoordinates, SpaceCurve, SurfaceInt, TNBFrame, Tangent,

  TangentLine, TangentPlane, TangentVector, Torsion, Vector,

  VectorField, VectorPotential, VectorSpace, Wronskian, diff,

  eval, evalVF, int, limit, series]
> with(LinearAlgebra);
[&x, Add, Adjoint, BackwardSubstitute, BandMatrix, Basis,

  BezoutMatrix, BidiagonalForm, BilinearForm, CARE,

  CharacteristicMatrix, CharacteristicPolynomial, Column,

  ColumnDimension, ColumnOperation, ColumnSpace, CompanionMatrix,

  ConditionNumber, ConstantMatrix, ConstantVector, Copy,

  CreatePermutation, CrossProduct, DARE, DeleteColumn, DeleteRow,

  Determinant, Diagonal, DiagonalMatrix, Dimension, Dimensions,

  DotProduct, EigenConditionNumbers, Eigenvalues, Eigenvectors,

  Equal, ForwardSubstitute, FrobeniusForm, GaussianElimination,

  GenerateEquations, GenerateMatrix, Generic, GetResultDataType,

  GetResultShape, GivensRotationMatrix, GramSchmidt,

  HankelMatrix, HermiteForm, HermitianTranspose, HessenbergForm,

  HilbertMatrix, HouseholderMatrix, IdentityMatrix,

  IntersectionBasis, IsDefinite, IsOrthogonal, IsSimilar,

  IsUnitary, JordanBlockMatrix, JordanForm, KroneckerProduct,

  LA_Main, LUDecomposition, LeastSquares, LinearSolve,

  LyapunovSolve, Map, Map2, MatrixAdd, MatrixExponential,

  MatrixFunction, MatrixInverse, MatrixMatrixMultiply,

  MatrixNorm, MatrixPower, MatrixScalarMultiply,

  MatrixVectorMultiply, MinimalPolynomial, Minor, Modular,

  Multiply, NoUserValue, Norm, Normalize, NullSpace,

  OuterProductMatrix, Permanent, Pivot, PopovForm,

  QRDecomposition, RandomMatrix, RandomVector, Rank,

  RationalCanonicalForm, ReducedRowEchelonForm, Row,

  RowDimension, RowOperation, RowSpace, ScalarMatrix,

  ScalarMultiply, ScalarVector, SchurForm, SingularValues,

  SmithForm, StronglyConnectedBlocks, SubMatrix, SubVector,

  SumBasis, SylvesterMatrix, SylvesterSolve, ToeplitzMatrix,

  Trace, Transpose, TridiagonalForm, UnitVector,

  VandermondeMatrix, VectorAdd, VectorAngle,

  VectorMatrixMultiply, VectorNorm, VectorScalarMultiply,

  ZeroMatrix, ZeroVector, Zip]
> rA := Matrix(2, 1, {(1, 1) = r*cos(theta(t)), (2, 1) = r*sin(theta(t))});
                    Matrix(%id = 5011560706)
> A := Matrix(2, 2, {(1, 1) = cos(theta(t)), (1, 2) = -sin(theta(t)), (2, 1) = sin(theta(t)), (2, 2) = cos(theta(t))});
                    Matrix(%id = 5011560770)
> `&rho;p` := Matrix(2, 1, {(1, 1) = sum(l[j], j = 1 .. i-1)+xe, (2, 1) = 0});
                    Matrix(%id = 5011560834)
> q(t):=matrix(6,1);   ;
t -> matrix(6, 1)
> type(q(t), matrix);
                              true
> qt(t):=Transpose(q(t)); ;
Error, invalid input: LinearAlgebra:-Transpose expects its 1st argument, A, to be of type {Matrix, Vector, scalar} or coercible via `~Simplify`, but received array( 1 .. 6, 1 .. 1, [ ] )
回复
分享到:

使用道具 举报

 楼主| 发表于 2012-11-10 19:39 | 显示全部楼层
本帖最后由 spring_zhao 于 2012-11-10 19:46 编辑

为什么会出现红色所显示的错误呢?我应该怎么改呢?
我用whattype(q(t));得到的是array,为什么呢?根据红字所显示的意思,transpose命令是不适用于array数据类型的,但是用matrix这个命令出来的数据类型就是array,我该怎么办呢,是不是transpose命令不适用于matrix命令得到的矩阵呢?
发表于 2013-3-18 12:52 | 显示全部楼层
查帮助啊,有中文帮助的
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-11-17 06:08 , Processed in 0.058948 second(s), 17 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表