马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?我要加入
x
[code=Cpp width=600px]
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define PI 3.14159265358979323846
struct COMPLEX
{
float re;
float im;
} cplx , * Hfield , * S , * R , * w;
int n , m;
int ln , lm;
void initiate ();
void dfft ();
void rdfft ();
void showresult ();
void fft (int l , int k);
int reverse (int t , int k);
void W (int l);
int loop (int l);
void conjugate ();
void add (struct COMPLEX * x , struct COMPLEX * y , struct COMPLEX * z);
void sub (struct COMPLEX * x , struct COMPLEX * y , struct COMPLEX * z);
void mul (struct COMPLEX * x , struct COMPLEX * y , struct COMPLEX * z);
struct COMPLEX * Hread(int i , int j);
void Hwrite (int i , int j , struct COMPLEX x);
void main ()
{
initiate ();
printf("\n原始数据:\n");
showresult();
getchar ();
dfft ();
printf("\n快速复利叶变换后的结果:\n");
showresult ();
getchar ();
rdfft ();
printf("\n快速复利叶逆变换后的结果:\n");
showresult ();
getchar ();
free (Hfield);
}
void initiate ()
{//程序初始化操作,包括分配内存、读入要处理的数据、进行显示等
FILE * df;
df = fopen ("data.txt" , "r");
fscanf (df , "%5d" , &n);
fscanf (df , "%5d" , &m);
if ((ln = loop (n)) == -1)
{
printf (" 列数不是2的整数次幂 ");
exit (1);
}
if ((lm = loop (m)) == -1)
{
printf (" 行数不是2的整数次幂 ");
exit (1);
}
Hfield = (struct COMPLEX *) malloc (n * m * sizeof (cplx));
if (fread (Hfield , sizeof (cplx) , m * n , df) != (unsigned) (m * n))
{
if (feof (df)) printf (" Premature end of file ");
else printf (" File read error ");
}
fclose (df);
}
void dfft ()
{//进行二维快速复利叶变换
int i , j;
int l , k;
l = n;
k = ln;
w = (struct COMPLEX *) calloc (l , sizeof (cplx));
R = (struct COMPLEX *) calloc (l , sizeof (cplx));
S = (struct COMPLEX *) calloc (l , sizeof(cplx));
W (l);
for ( i = 0 ; i < m ; i++ )
{//按行进行快速复利叶变换
for (j = 0 ; j < n ; j++)
{
S[j].re = Hread (i , j)->re;
S[j].im = Hread (i , j)->im;
}
fft(l , k);
for (j = 0 ; j < n ; j++)
Hwrite (i , j , R[j]);
}
free (R);
free (S);
free (w);
l = m;
k = lm;
w = (struct COMPLEX *) calloc (l , sizeof (cplx));
R = (struct COMPLEX *) calloc (l , sizeof (cplx));
S = (struct COMPLEX *) calloc (l , sizeof (cplx));
W (l);
for (i = 0 ; i < n ; i++)
{//按列进行快速复利叶变换
for(j = 0 ; j < m ; j++)
{
S[j].re = Hread(j , i)->re;
S[j].im = Hread(j , i)->im;
}
fft(l , k);
for (j = 0 ; j < m ; j++)
Hwrite (j , i , R[j]);
}
free (R);
free (S);
free (w);
}
void rdfft ()
{
conjugate ();
dfft ();
conjugate ();
}
void showresult ()
{
int i , j;
for (i = 0 ; i < m ; i++)
{
printf ( " \n第%d行\n " , i);
for (j = 0 ; j < n ; j++)
{
if (j % 4 == 0) printf (" \n ");
printf(" (%5.2f,%5.2fi) " , Hread (i , j)->re , Hread (i , j)->im);
}
}
}
void fft (int l , int k)
{
int i , j , s , nv , t;
float c;
struct COMPLEX mp , r;
nv = l;
c = (float) l;
c = pow (c , 0.5);
for (i = 0 ; i < k ; i++)
{
for (t = 0 ; t < l ; t += nv)
{
for (j = 0 ; j < nv / 2 ; j++)
{
s = (t + j) >> (k - i -1);
s = reverse(s , k);
r.re = S[t + j].re;
r.im = S[t + j].im;
mul (&w , &S[t + j + nv / 2] , &mp);/////////讲解传递结构指针和结构本身的区别
add (&r , &mp , &S[t + j]);
sub (&r , &mp , &S[t + j + nv / 2]);
}
}
nv = nv >> 1;
}
for (i = 0 ; i < l ; i++)
{
j = reverse(i , k);
R[j].re = S.re / c;
R[j].im = S.im / c;
}
}
int reverse (int t , int k)
{
int i , x , y;
y = 0;
for (i = 0 ; i < k ; i++)
{
x = t & 1;
t = t >> 1;
y = (y << 1) + x;
}
return y;
}
void W (int l)
{
int i;
float c , a;
c = (float) l;
c = 2 * PI / c;
for (i = 0 ; i < l ; i++)
{
a = (float) i;
w.re = (float) cos(a * c);
w.im = -(float) sin(a * c);
}
}
int loop (int l)
{//检验输入数据是否为2的整数次幂,如果是返回用2进制表示时的位数
int i , m;
if (l != 0)
{
for (i = 1 ; i < 32 ; i++)
{
m = l >> i;
if (m == 0)
break;
}
if (l == (1 << (i - 1)))
return i - 1;
}
return -1;
}
void conjugate ()
{//求复数矩阵的共轭矩阵
int i , j;
for (i = 0 ; i < m ; i++)
{
for (j = 0 ; j < n ; j++)
{
Hread (i , j)->im *= -1;
}
}
}
struct COMPLEX * Hread (int i , int j)
{//按读矩阵方式返回Hfield中指定位置的指针
return (Hfield + i * n + j);
}
void Hwrite (int i , int j , struct COMPLEX x)
{//按写矩阵方式将复数结构x写到指定的Hfield位置上
(Hfield + i * n + j)->re = x.re;
(Hfield + i * n + j)->im = x.im;
}
void add (struct COMPLEX * x , struct COMPLEX * y , struct COMPLEX * z)
{//定义复数加法
z->re = x->re + y->re;
z->im = x->im + y->im;
}
void sub (struct COMPLEX * x , struct COMPLEX * y , struct COMPLEX * z)
{//定义复数减法
z->re = x->re - y->re;
z->im = x->im - y->im;
}
void mul (struct COMPLEX * x , struct COMPLEX * y , struct COMPLEX * z)
{//定义复数乘法
z->re = (x->re) * (y->re) - (x->im) * (y->im);
z->im = (x->im) * (y->re) + (x->re) * (y->im);
}[/code] |