portis 发表于 2009-2-12 18:59

颈动脉粥样硬化斑块形成与斑块薄壁压力之Vivo核磁共振为基础...

本帖最后由 wdhd 于 2016-4-1 14:14 编辑

References1.
Bathe, KJ. Finite Element Procedures. Prentice Hall, Inc; New Jersey: 1996. 2.
Bathe KJ. , editor. Theory and Modeling Guide. I & II. ADINA and ADINA-F, ADINA R & D, Inc; Watertown, MA: 2002. 3.
Cai, JM; Hatsukami, TS; Ferguson, MS; Small, R; Polissar, NL; Yuan, C. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation. 2002;106:1368–1373. [http://www.ncbi.nlm.nih.gov/pubmed/12221054]PubMed] 4.
Friedman, MH. Arteriosclerosis research using vascular flow models: from 2-D branches to compliant replicas. J Biomech Eng. 1993;115:595–601. [http://www.ncbi.nlm.nih.gov/pubmed/8302047]PubMed] 5.
Friedman, MH; Bargeron, CB; Deters, OJ; Hutchins, GM; Mark, FF. Correlation between wall shear and intimal thickness at a coronary artery branch. Atherosclerosis. 1987;68:27–33. [http://www.ncbi.nlm.nih.gov/pubmed/3689481]PubMed] 6.
Fung, YC. A First Course in Continuum Mechanics. 3. Englewood Cliffs; New Jersey: 1994. 7.
Giddens, DP; Zarins, CK; Glagov, S. The role of fluid mechanics in the localization and detection of atherosclerosis. Journal of Biomechanical Engineering. 1993;115:588–594. [http://www.ncbi.nlm.nih.gov/pubmed/8302046]PubMed] 8.
Holzapfel, GA; Stadler, M; Schulze-Bause, CAJ. A layer-specific three-dimensional model for the simulation of balloon angioplasty using Magnetic Resonance Imaging and mechanical testing. Annals of Biomedical Engineering. 2002;30(6):753–767. [http://www.ncbi.nlm.nih.gov/pubmed/12220076]PubMed] 9.
Huang, H; Virmani, R; Younis, H; Burke, AP; Kamm, RD; Lee, RT. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation. 2001;103:1051–1056. [http://www.ncbi.nlm.nih.gov/pubmed/11222465]PubMed] 10.
Humphrey, JD. Cardiovascular Solid Mechanics. Springer-Verlag; New York: 2002. 11.
Joshi, AK; Leask, RL; Myers, JG; Ojha, M; Butany, J; Ethier, CR. Intimal thickness is not associated with wall shear stress patterns in the human right coronary artery. Arterioscler Thromb Vasc Biol. 2004;24(12):2408–2413. [http://www.ncbi.nlm.nih.gov/pubmed/15472129]PubMed] 12.
Kaazempur-Mofrad, MR; Isasi, AG; Younis, HF; Chan, RC; Hinton, DP; Sukhova, G; Lamuraglia, GM; Lee, RT; Kamm, RD. Characterization of the Atherosclerotic Carotid Bifurcation Using MRI, Finite Element Modeling, and Histology. Annals of Biomedical Engineering. 2004;32(7):932–946. [http://www.ncbi.nlm.nih.gov/pubmed/15298431]PubMed] 13.
Kerwin, W; Hooker, A; Spilker, M; Vicini, P; Ferguson, M; Hatsukami, T; Yuan, C. Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque. Circulation. 2003;107(6):851–856. [http://www.ncbi.nlm.nih.gov/pubmed/12591755]PubMed] 14.
Kobayashi, S; Tsunoda, D; Fukuzawa, Y; Morikawa, H; Tang, D; Ku, DN. Flow and compression in arterial models of stenosis with lipid core. Proceedings of 2003 ASME Summer Bioengineering Conference; Miami, FL. 2003. pp. 497–498. 15.
Ku, DN. Blood Flow in Arteries. Annu Rev Fluid Mech. 1997;29:399–434. 16.
Ku, DN; Giddens, DP; Zarins, CK; Glagov, S. Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis. 1985;5:293–302. [http://www.ncbi.nlm.nih.gov/pubmed/3994585]PubMed] 17.
Liu, F; Xu, D; Ferguson, MS; Chu, B; Saam, T; Takaya, N; Hatsukami, TS; Yuan, C; Kerwin, WS. Automated in vivo segmentation of carotid plaque MRI with morphology-enhanced probability maps. Magn Reson Med. 2006;55:659–668. [http://www.ncbi.nlm.nih.gov/pubmed/16470594]PubMed] 18.
Long, Q; Xu, XY; Ariff, B; Thom, SA; Hughes, AD; Stanton, AV. Reconstruction of blood flow patterns in a human carotid bifurcation: A combined CFD and MRI study. Journal of Magnetic Resonance Imaging. 2000;11:299–311. [http://www.ncbi.nlm.nih.gov/pubmed/10739562]PubMed] 19.
Long, Q; Xu, XY; Collins, MW; Griffith, TM; Bourne, M. Fluid dynamics of the aortic bifurcation using magnetic resonance imaging and computational fluid dynamics. Internal Medicine (Clinical and Laboratory). 1997;5:35–42. 20.
Naghavi, M; Libby, P; Falk, E; Casscells, SW; Litovsky, S; Rumberger, J; Badimon, JJ; Stefanadis, C; Moreno, P; Pasterkamp, G; Fayad, Z; Stone, PH; Waxman, S; Raggi, P; Madjid, M; Zarrabi, A; Burke, A; Yuan, C; Fitzgerald, PJ; Siscovick, DS; de Korte, CL; Aikawa, M; Juhani Airaksinen, KE; Assmann, G; Becker, CR; Chesebro, JH; Farb, A; Galis, ZS; Jackson, C; Jang, IK; Koenig, W; Lodder, RA; March, K; Demirovic, J; Navab, M; Priori, SG; Rekhter, MD; Bahr, R; Grundy, SM; Mehran, R; Colombo, A; Boerwinkle, E; Ballantyne, C; Insull, W, Jr; Schwartz, RS; Vogel, R; Serruys, PW; Hansson, GK; Faxon, DP; Kaul, S; Drexler, H; Greenland, P; Muller, JE; Virmani, R; Ridker, PM; Zipes, DP; Shah, PK; Willerson, JT. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation. 2003a;108(14):1664–1672. [http://www.ncbi.nlm.nih.gov/pubmed/14530185]PubMed] 21.
Naghavi, M; Libby, P; Falk, E; Casscells, SW; Litovsky, S; Rumberger, J; Badimon, JJ; Stefanadis, C; Moreno, P; Pasterkamp, G; Fayad, Z; Stone, PH; Waxman, S; Raggi, P; Madjid, M; Zarrabi, A; Burke, A; Yuan, C; Fitzgerald, PJ; Siscovick, DS; de Korte, CL; Aikawa, M; Juhani Airaksinen, KE; Assmann, G; Becker, CR; Chesebro, JH; Farb, A; Galis, ZS; Jackson, C; Jang, IK; Koenig, W; Lodder, RA; March, K; Demirovic, J; Navab, M; Priori, SG; Rekhter, MD; Bahr, R; Grundy, SM; Mehran, R; Colombo, A; Boerwinkle, E; Ballantyne, C; Insull, W, Jr; Schwartz, RS; Vogel, R; Serruys, PW; Hansson, GK; Faxon, DP; Kaul, S; Drexler, H; Greenland, P; Muller, JE; Virmani, R; Ridker, PM; Zipes, DP; Shah, PK; Willerson, JT. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation. 2003b;108(15):1772–1778. [http://www.ncbi.nlm.nih.gov/pubmed/14557340]PubMed] 22.
Nerem, RM. Vascular fluid mechanics, the arterial wall, and atherosclerosis. J Biomech Engng. 1992;114:274–282. [http://www.ncbi.nlm.nih.gov/pubmed/1522720]PubMed] 23.
Ravn, HB; Falk, E. Histopathology of plaque rupture. Cardiology Clinics. 1999;17:263–70. [http://www.ncbi.nlm.nih.gov/pubmed/10384825]PubMed] 24.
Ross, R. The pathogenesis of atherosclerosis: a perspective for the 1990’s. Nature. 1993;362:801–809. [http://www.ncbi.nlm.nih.gov/pubmed/8479518]PubMed] 25.
Steinman, DA; Thomas, JB; Ladak, HM; Milner, JS; Rutt, BK; Spence, JD. Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magn Reson Med. 2002;47(1):149–159. [http://www.ncbi.nlm.nih.gov/pubmed/11754454]PubMed] 26.
Tang, D; Yang, C; Kobayashi, S; Ku, DN. Steady flow and wall compression in stenotic arteries: a 3-D thick-wall model with fluid-wall interactions. Journal of Biomechanical Engineering. 2001;123:548–557. [http://www.ncbi.nlm.nih.gov/pubmed/11783725]PubMed] 27.
Tang, D; Yang, C; Kobayashi, S; Zheng, J; Vito, RP. Effects of stenosis asymmetry on blood flow and artery compression: a 3-D FSI model. Annals of Biomedical Engineering.

[ 本帖最后由 portis 于 2009-2-12 19:04 编辑 ]

portis 发表于 2009-2-12 19:05

1.        Tang, D; Yang, C; Kobayashi, S; Ku, DN. Effect of a Lipid Pool on Stress/Strain Distributions in Stenotic Arteries: 3D FSI Models. J Biomech Engng. 2004a;126:363–370.
2.        Tang, D; Yang, C; Zheng, J; Woodard, PK; Saffitz, JE; Sicard, GA; Pilgram, TK; Yuan, C. Quantifying effects of plaque structure and material properties on stress behaviors in human atherosclerotic plaques using 3D FSI models. Journal of Biomechanical Engineering. 2005b;127(7):1185–1194.
3.        Tang, D; Yang, C; Zheng, J; Woodard, PK; Sicard, GA; Saffitz, JE; Yuan, C. 3D MRI-based multi-component FSI models for atherosclerotic plaques, a 3-D FSI model. Annals of Biomedical Engineering. 2004b;32(7):947–960.
4.        Wentzel, JJ; Janssen, E; Vos, J; Schuurbiers, JC; Krams, R; Serruys, PW; de Feyter, PJ; Slager, CJ. Extension of increased atherosclerotic wall thickness into high shear stress regions is associated with loss of compensatory remodeling. Circulation. 2003;108(1):17–23.
5.        Wentzel, JJ; Corti, R; Fayad, ZA; Wisdom, P; Macaluso, F; Winkelman, MO; Fuster, V; Badimon, JJ. Does shear stress modulate both plaque progression and regression in the thoracic aorta? Human study using serial magnetic resonance imaging. J Am Coll Cardiol. 2005;45(6):846–854.
6.        Yang, C; Tang, D; Yuan, C; Hatsukami, TS; Zheng, J; Woodard, PK. In Vivo/Ex Vivo MRI-Based 3D Models with Fluid-Structure Interactions for Human Atherosclerotic Plaques Compared with Fluid/Wall-Only Models. CMES: Computer Modeling in Engineering and Sciences. 2007;19(3):233–245.
7.        Yuan, C; Kerwin, WS. MRI of atherosclerosis. Journal of Magnetic Resonance Imaging. 2004;19(6):710–719.
8.        Yuan, C; Mitsumori, LM; Beach, KW; Maravilla, KR. Special review: carotid atherosclerotic plaque: noninvasive MR characterization and identification of vulnerable lesions. Radiology. 2001a;221:285–299.
Yuan, C; Mitsumori, LM; Ferguson, MS; Polissar, NL; Echelard, DE; Ortiz, G; Small, R; Davies, JW; Kerwin, WS; Hatsukami, TS. In vivo accuracy of multispectral MR imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation. 2001b;104:2051–2056.

zjj04640451 发表于 2009-4-13 11:08

没看懂,晕头转向
页: [1]
查看完整版本: 颈动脉粥样硬化斑块形成与斑块薄壁压力之Vivo核磁共振为基础...