连续介质力学、断裂力学、流体力学基本定义及关系!
连续介质力学 它是研究质量连续分布的可变形物体的运动规律,主要讨论一切连续介质普遍遵从的力学规律。例如,质量守恒、动量和角动量定理、能量守恒等。弹性体力学和流体力学有时综合讨论称为连续介质力学。基本假设
连续介质力学的最基本假设是“连续介质假设”:即认为真实的流体和固体可以近似看作连续的,充满全空间的介质组成,物质的宏观性质依然受牛顿力学的支配。这一假设忽略物质的具体微观结构(对固体和液体微观结构研究属于凝聚态物理学的范畴),而用一组偏微分方程来表达宏观物理量(如质量,数度,压力等)。这些方程包括描述介质性质的方程(constitutive equations)和基本的物理定律,如质量守恒定律,动量守恒定律等。
研究对象
固体:固体不受外力时,具有确定的形状。固体包括不可变形的刚体和可变形固体。刚体在一般力学中的刚体力学研究;连续介质力学中的固体力学则研究可变形固体在应力,应变等外界因素作用下的变化规律,主要包括弹性和塑性问题。
弹性:应力作用后,可恢复到原来的形状。
塑性:应力作用后,不能恢复到原来的形状,发生永久形变。
流体:流体包括液体和气体,无确定形状,可流动。流体最重要的性质是粘性(viscosity,流体对由剪切里引起的形变的抵抗力,无粘性的理想气体,不属于流体力学的研究范围)。从理论研究的角度,流体常被分为牛顿流体和非牛顿流体。
牛顿流体:满足牛顿粘性定律的流体,比如水和空气。
非牛顿流体:不满足牛顿粘性定律的流体,介乎于固体和牛顿流体之间的物质形态。
主要分支学科
基本分支学科:
固体力学
弹性力学
塑性力学
断裂力学
流体力学
流体静力学
流体运动学
流体动力学
应用分支学科和交叉学科:
结构力学
材料力学
爆炸力学
空气动力学
等离子体动力学
磁流体动力学
断裂力学 断裂力学的起源与发展
最早的断裂力学思想
1921年英国科学家Griffith研究“为什么玻璃的实际强度比从它的分子结构所预期的强度低得多?”,推测“由于微小的裂纹所引起的应力集中而产生”,提出适合于判断脆性材料的与材料裂纹尺寸有关的断裂准则——能量准则。
断裂力学发展的背景
蓬勃发展的近代先进科学技术,对传统的强度理论提出了挑战。
1) 高强度材料和超高强度材料的使用
2) 构件的大型化
3) 全焊接结构的使用
断裂力学的形成
1957年,美国科学家G.R.Irwin提出应力强度因子的概念, 线弹性断裂理论的重大突破,应力强度因子理论作为断裂力学的最初分支——线弹性断裂力学建立起来。
断裂力学的发展
现代断裂理论大约是在1948—1957年间形成,它是在当时生产实践问题的强烈推动下,在经典Griffith理论的基础上发展起来的,上世纪60年代是其大发展时期。
我国断裂力学工作起步至少比国外晚了20年,直到上世纪70年代,断裂力学才广泛引入我国,一些单位和科技工作者逐步开展了断裂力学的研究和应用工作。
断裂力学是起源于20世纪初期,发展于20世纪后期,并且仍在不断发展和完善的一门科学。因此,它是具有前沿性和挑战性的研究成果。
研究含裂纹物体的强度和裂纹扩展规律的科学。固体力学的一个分支。又称裂纹力学。它萌芽于20世纪20年代A.A.格里菲斯对玻璃低应力脆断的研究。其后,国际上发生了一系列重大的低应力脆断灾难性事故,促进这方面的研究,并于50年代开始形成断裂力学。根据所研究的裂纹尖端附近材料塑性区的大小,可分为线弹性断裂力学和弹塑性断裂力学;根据所研究的引起材料断裂的载荷性质,可分为断裂(静)力学和断裂动力学。断裂力学的任务是:求得各类材料的断裂韧度;确定物体在给定外力作用下是否发生断裂,即建立断裂准则;研究载荷作用过程中裂纹扩展规律;研究在腐蚀环境和应力同时作用下物体的断裂(即应力腐蚀)问题。断裂力学已在航空、航天、交通运输、化工、机械、材料、能源等工程领域得到广泛应用。
线弹性断裂力学应用线弹性理论研究物体裂纹扩展规律和断裂准则。1921年格里菲斯通过分析材料的低应力脆断,提出裂纹失稳扩展准则格里菲斯准则。1957年G.R.欧文通过分析裂纹尖端附近的应力场,提出应力强度因子的概念,建立了以应力强度因子为参量的裂纹扩展准则。线弹性断裂力学可用来解决脆性材料的平面应变断裂问题,适用于大型构件(如发电机转子、较大的接头、车轴等)和脆性材料的断裂分析。实际上,裂纹尖端附近总是存在塑性区,若塑性区很小(如远小于裂纹长度),则可采用线弹性断裂力学方法进行分析。
弹塑性断裂力学应用弹性力学、塑性力学研究物体裂纹扩展规律和断裂准则,适用于裂纹体内裂纹尖端附近有较大范围塑性区的情况。由于直接求裂纹尖端附近塑性区断裂问题的解析解十分困难,因此多采用J积分法、COD(裂纹张开位移)法、R(阻力)曲线法等近似或实验方法进行分析。通常对薄板平面应力断裂问题的研究,也要采用弹塑性断裂力学。弹塑性断裂力学在焊接结构的缺陷评定、核电工程的安全性评定、压力容器和飞行器的断裂控制以及结构物的低周疲劳和蠕变断裂的研究等方面起重要作用。弹塑性断裂力学的理论迄今仍不成熟,弹塑性裂纹的扩展规律还有待进一步研究。
断裂动力学 采用连续介质力学方法 ,考虑物体惯性,研究固体在高速加载或裂纹高速扩展下的断裂规律。断裂动力学的主要研究内容为:①断裂准则,包括裂纹在高速加载下的响应及起始和失稳扩展准则、高速扩展裂纹的分叉判据。②高速扩展裂纹尖端附近的应力应变场。③裂纹高速扩展的极限速度。④裂纹高速扩展的停止(止裂)原理。⑤高应变率条件下的材料特性及其对高速扩展裂纹阻力的影响。⑥裂纹高速扩展中的能量转换。⑦高速碰撞下的侵彻和穿孔问题。断裂动力学研究方法分理论分析和动态实验两方面。断裂动力学已在冶金学、地震学、合成化学以及水坝工程、飞机和船舶设计、核动力装置和武器装备等方面得到一些实际应用,但理论尚不够成熟。
流体力学 主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。
是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。在生活、环保、科学技术及工程中具有重要的应用价值。
流体力学中研究得最多的流体是水和空气。它的主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程和物理学、化学的基础知识。
1738年伯努利出版他的专著时,首先采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。
除水和空气以外,流体还指作为汽轮机工作介质的水蒸气、润滑油、地下石油、含泥沙的江水、血液、超高压作用下的金属和燃烧后产生成分复杂的气体、高温条件下的等离子体等等。
气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,以及天体物理的若干问题等等,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体力学的指导,同时也促进了它不断地发展。1950年后,电子计算机的发展又给予流体力学以极大的推动。
流体力学的发展简史
流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。古时中国有大禹治水疏通江河的传说;秦朝李冰父子带领劳动人民修建的都江堰,至今还在发挥着作用;大约与此同时,古罗马人建成了大规模的供水管道系统等等。
对流体力学学科的形成作出第一个贡献的是古希腊的阿基米德,他建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。
直到15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。
17世纪,力学奠基人牛顿研究了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。
之后,法国皮托发明了测量流速的皮托管;达朗贝尔对运河中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。
欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国拉格朗日对于无旋运动,德国赫尔姆霍兹对于涡旋运动作了不少研究……。在上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘流体。这种理论当然阐明不了流体中粘性的效应。
19世纪,工程师们为了解决许多工程问题,尤其是要解决带有粘性影响的问题。于是他们部分地运用流体力学,部分地采用归纳实验结果的半经验公式进行研究,这就形成了水力学,至今它仍与流体力学并行地发展。1822年,纳维建立了粘性流体的基本运动方程;1845年,斯托克斯又以更合理的基础导出了这个方程,并将其所涉及的宏观力学基本概念论证得令人信服。这组方程就是沿用至今的纳维-斯托克斯方程(简称N-S方程),它是流体动力学的理论基础。上面说到的欧拉方程正是N-S方程在粘度为零时的特例。
普朗特学派从1904年到1921年逐步将N-S方程作了简化,从推理、数学论证和实验测量等各个角度,建立了边界层理论,能实际计算简单情形下,边界层内流动状态和流体同固体间的粘性力。同时普朗克又提出了许多新概念,并广泛地应用到飞机和汽轮机的设计中去。这一理论既明确了理想流体的适用范围,又能计算物体运动时遇到的摩擦阻力。使上述两种情况得到了统一。
20世纪初,飞机的出现极大地促进了空气动力学的发展。航空事业的发展,期望能够揭示飞行器周围的压力分布、飞行器的受力状况和阻力等问题,这就促进了流体力学在实验和理论分析方面的发展。20世纪初,以儒科夫斯基、恰普雷金、普朗克等为代表的科学家,开创了以无粘不可压缩流体位势流理论为基础的机翼理论,阐明了机翼怎样会受到举力,从而空气能把很重的飞机托上天空。机翼理论的正确性,使人们重新认识无粘流体的理论,肯定了它指导工程设计的重大意义。
机翼理论和边界层理论的建立和发展是流体力学的一次重大进展,它使无粘流体理论同粘性流体的边界层理论很好地结合起来。随着汽轮机的完善和飞机飞行速度提高到每秒50米以上,又迅速扩展了从19世纪就开始的,对空气密度变化效应的实验和理论研究,为高速飞行提供了理论指导。20世纪40年代以后,由于喷气推进和火箭技术的应用,飞行器速度超过声速,进而实现了航天飞行,使气体高速流动的研究进展迅速,形成了气体动力学、物理-化学流体动力学等分支学科。
以这些理论为基础,20世纪40年代,关于炸药或天然气等介质中发生的爆轰波又形成了新的理论,为研究原子弹、炸药等起爆后,激波在空气或水中的传播,发展了爆炸波理论。此后,流体力学又发展了许多分支,如高超声速空气动力学、超音速空气动力学、稀薄空气动力学、电磁流体力学、计算流体力学、两相(气液或气固)流等等。
这些巨大进展是和采用各种数学分析方法和建立大型、精密的实验设备和仪器等研究手段分不开的。从50年代起,电子计算机不断完善,使原来用分析方法难以进行研究的课题,可以用数值计算方法来进行,出现了计算流体力学这一新的分支学科。与此同时,由于民用和军用生产的需要,液体动力学等学科也有很大进展。
20世纪60年代,根据结构力学和固体力学的需要,出现了计算弹性力学问题的有限元法。经过十多年的发展,有限元分析这项新的计算方法又开始在流体力学中应用,尤其是在低速流和流体边界形状甚为复杂问题中,优越性更加显著。近年来又开始了用有限元方法研究高速流的问题,也出现了有限元方法和差分方法的互相渗透和融合。
从20世纪60年代起,流体力学开始了流体力学和其他学科的互相交叉渗透,形成新的交叉学科或边缘学科,如物理-化学流体动力学、磁流体力学等;原来基本上只是定性地描述的问题,逐步得到定量的研究,生物流变学就是一个例子。
流体力学的基本假设
流体力学有一些基本假设,基本假设以方程的形式表示。例如,在三维的不可压缩流体中,质量守恒的假设的方程如下:在任意封闭曲面(例如球体)中,由曲面进入封闭曲面内的质量速率,需和由曲面离开封闭曲面内的质量速率相等。(换句话说,曲面内的质量为定值,曲面外的质量也是定值)以上方程可以用曲面上的积分式表示。
流体力学假设所有流体满足以下的假设:
·质量守恒
·动量守恒
·连续体假设
在流体力学中常会假设流体是不可压缩流体,也就是流体的密度为一定值。液体可以算是不可压缩流体,气体则不是。有时也会假设流体的黏度为零,此时流体即为非粘性流体。气体常常可视为非粘性流体。若流体黏度不为零,而且流体被容器包围(如管子),则在边界处流体的速度为零。
流体力学的研究内容
流体是气体和液体的总称。在人们的生活和生产活动中随时随地都可遇到流体,所以流体力学是与人类日常生活和生产事业密切相关的。大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70%是水面。大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体力学的研究内容。
20世纪初,世界上第一架飞机出现以后,飞机和其他各种飞行器得到迅速发展。20世纪50年代开始的航天飞行,使人类的活动范围扩展到其他星球和银河系。航空航天事业的蓬勃发展是同流体力学的分支学科——空气动力学和气体动力学的发展紧密相连的。这些学科是流体力学中最活跃、最富有成果的领域。
石油和天然气的开采,地下水的开发利用,要求人们了解流体在多孔或缝隙介质中的运动,这是流体力学分支之一——渗流力学研究的主要对象。渗流力学还涉及土壤盐碱化的防治,化工中的浓缩、分离和多孔过滤,燃烧室的冷却等技术问题。
燃烧离不开气体,这是有化学反应和热能变化的流体力学问题,是物理-化学流体动力学的内容之一。爆炸是猛烈的瞬间能量变化和传递过程,涉及气体动力学,从而形成了爆炸力学。
沙漠迁移、河流泥沙运动、管道中煤粉输送、化工中气体催化剂的运动等,都涉及流体中带有固体颗粒或液体中带有气泡等问题,这类问题是多相流体力学研究的范围。
等离子体是自由电子、带等量正电荷的离子以及中性粒子的集合体。等离子体在磁场作用下有特殊的运动规律。研究等离子体的运动规律的学科称为等离子体动力学和电磁流体力学,它们在受控热核反应、磁流体发电、宇宙气体运动等方面有广泛的应用。
风对建筑物、桥梁、电缆等的作用使它们承受载荷和激发振动;废气和废水的排放造成环境污染;河床冲刷迁移和海岸遭受侵蚀;研究这些流体本身的运动及其同人类、动植物间的相互作用的学科称为环境流体力学 (其中包括环境空气动力学、建筑空气动力学)。这是一门涉及经典流体力学、气象学、海洋学和水力学、结构动力学等的新兴边缘学科。
生物流变学研究人体或其他动植物中有关的流体力学问题,例如血液在血管中的流动,心、肺、肾中的生理流体运动和植物中营养液的输送。此外,还研究鸟类在空中的飞翔,动物在水中的游动,等等。
因此,流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的应用。此外,如从流体作用力的角度,则可分为流体静力学、流体运动学和流体动力学;从对不同“力学模型”的研究来分,则有理想流体动力学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛顿流体力学等。
流体力学的研究分支
纳维-斯托克斯方程(Navier-Stokes equations),以克劳德-路易·纳维(Claude-Louis Navier)和乔治·盖伯利尔·斯托克斯命名,是一组描述象液体和空气这样的流体物质的方程。这些方程建立了流体的粒子动量的改变率(加速度)和作用在液体内部的压力的变化和耗散粘滞力(类似于摩擦力)以及重力之间的关系。这些粘滞力产生于分子的相互作用,能告诉我们液体有多粘。这样,纳维-斯托克斯方程描述作用于液体任意给定区域的力的动态平衡。
他们是最有用的一组方程之一,因为它们描述了大量对学术和经济有用的现象的物理过程。它们可以用于建模天气,洋流,管道中的水流,星系中恒星的运动,翼型周围的气流。它们也可以用于飞行器和车辆的设计,血液循环的研究,电站的设计,污染效应的分析,等等。
纳维-斯托克斯方程依赖微分方程来描述流体的运动。这些方程,和代数方程不同,不寻求建立所研究的变量(譬如速度和压力)的关系,而是建立这些量的变化率或通量之间的关系。用数学术语来讲,这些变化率对应于变量的导数。这样,最简单情况的0粘滞度的理想流体的纳维-斯托克斯方程表明加速度(速度的导数,或者说变化率)是和内部压力的导数成正比的。
这表示对于给定的物理问题的纳维-斯托克斯方程的解必须用微积分的帮助才能取得。实用上,只有最简单的情况才能用这种方法解答,而它们的确切答案是已知的。这些情况通常设计稳定态(流场不随时间变化)的非湍流,其中流体的粘滞系数很大或者其速度很小(小的雷诺数)。
对于更复杂的情形,例如厄尔尼诺这样的全球性气象系统或机翼的升力,纳维-斯托克斯方程的解必须借助计算机。这本身是一个科学领域,称为计算流体力学。
(1)基本假设
在解释纳维-斯托克斯方程的细节之前,首先,必须对流体作几个假设。第一个是流体是连续的。这强调它不包含形成内部的空隙,例如,溶解的气体的气泡,而且它不包含雾状粒子的聚合。另一个必要的假设是所有涉及到的场,全部是可微的,例如压强,速度,密度,温度,等等。
该方程从质量,动量,和能量的守恒的基本原理导出。对此,有时必须考虑一个有限的任意体积,称为控制体积,在其上这些原理很容易应用。该有限体积记为Ω,而其表面记为?Ω。该控制体积可以在空间中固定,也可能随着流体运动。这会导致一些特殊的结果,我们将在下节看到。
流体力学的研究方法
进行流体力学的研究可以分为现场观测、实验室模拟、理论分析、数值计算四个方面:
现场观测是对自然界固有的流动现象或已有工程的全尺寸流动现象,利用各种仪器进行系统观测,从而总结出流体运动的规律,并借以预测流动现象的演变。过去对天气的观测和预报,基本上就是这样进行的。
不过现场流动现象的发生往往不能控制,发生条件几乎不可能完全重复出现,影响到对流动现象和规律的研究;现场观测还要花费大量物力、财力和人力。因此,人们建立实验室,使这些现象能在可以控制的条件下出现,以便于观察和研究。
同物理学、化学等学科一样,流体力学离不开实验,尤其是对新的流体运动现象的研究。实验能显示运动特点及其主要趋势,有助于形成概念,检验理论的正确性。二百年来流体力学发展史中每一项重大进展都离不开实验。
模型实验在流体力学中占有重要地位。这里所说的模型是指根据理论指导,把研究对象的尺度改变(放大或缩小)以便能安排实验。有些流动现象难于靠理论计算解决,有的则不可能做原型实验(成本太高或规模太大)。这时,根据模型实验所得的数据可以用像换算单位制那样的简单算法求出原型的数据。
现场观测常常是对已有事物、已有工程的观测,而实验室模拟却可以对还没有出现的事物、没有发生的现象(如待设计的工程、机械等)进行观察,使之得到改进。因此,实验室模拟是研究流体力学的重要方法。
理论分析是根据流体运动的普遍规律如质量守恒、动量守恒、能量守恒等,利用数学分析的手段,研究流体的运动,解释已知的现象,预测可能发生的结果。理论分析的步骤大致如下:
首先是建立“力学模型”,即针对实际流体的力学问题,分析其中的各种矛盾并抓住主要方面,对问题进行简化而建立反映问题本质的“力学模型”。流体力学中最常用的基本模型有:连续介质、牛顿流体、不可压缩流体、理想流体、平面流动等。
其次是针对流体运动的特点,用数学语言将质量守恒、动量守恒、能量守恒等定律表达出来,从而得到连续性方程、动量方程和能量方程。此外,还要加上某些联系流动参量的关系式(例如状态方程),或者其他方程。这些方程合在一起称为流体力学基本方程组。
求出方程组的解后,结合具体流动,解释这些解的物理含义和流动机理。通常还要将这些理论结果同实验结果进行比较,以确定所得解的准确程度和力学模型的适用范围。
从基本概念到基本方程的一系列定量研究,都涉及到很深的数学问题,所以流体力学的发展是以数学的发展为前提。反过来,那些经过了实验和工程实践考验过的流体力学理论,又检验和丰富了数学理论,它所提出的一些未解决的难题,也是进行数学研究、发展数学理论的好课题。按目前数学发展的水平看,有不少题目将是在今后几十年以内难于从纯数学角度完善解决的。
在流体力学理论中,用简化流体物理性质的方法建立特定的流体的理论模型,用减少自变量和减少未知函数等方法来简化数学问题,在一定的范围是成功的,并解决了许多实际问题。
对于一个特定领域,考虑具体的物理性质和运动的具体环境后,抓住主要因素忽略次要因素进行抽象化也同时是简化,建立特定的力学理论模型,便可以克服数学上的困难,进一步深入地研究流体的平衡和运动性质。
20世纪50年代开始,在设计携带人造卫星上天的火箭发动机时,配合实验所做的理论研究,正是依靠一维定常流的引入和简化,才能及时得到指导设计的流体力学结论。
此外,流体力学中还经常用各种小扰动的简化,使微分方程和边界条件从非线性的变成线性的。声学是流体力学中采用小扰动方法而取得重大成就的最早学科。声学中的所谓小扰动,就是指声音在流体中传播时,流体的状态(压力、密度、流体质点速度)同声音未传到时的差别很小。线性化水波理论、薄机翼理论等虽然由于简化而有些粗略,但都是比较好地采用了小扰动方法的例子。
每种合理的简化都有其力学成果,但也总有其局限性。例如,忽略了密度的变化就不能讨论声音的传播;忽略了粘性就不能讨论与它有关的阻力和某些其他效应。掌握合理的简化方法,正确解释简化后得出的规律或结论,全面并充分认识简化模型的适用范围,正确估计它带来的同实际的偏离,正是流体力学理论工作和实验工作的精华。
流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。
数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了“计算流体力学”。
从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。
解决流体力学问题时,现场观测、实验室模拟、理论分析和数值计算几方面是相辅相成的。实验需要理论指导,才能从分散的、表面上无联系的现象和实验数据中得出规律性的结论。反之,理论分析和数值计算也要依靠现场观测和实验室模拟给出物理图案或数据,以建立流动的力学模型和数学模式;最后,还须依靠实验来检验这些模型和模式的完善程度。此外,实际流动往往异常复杂(例如湍流),理论分析和数值计算会遇到巨大的数学和计算方面的困难,得不到具体结果,只能通过现场观测和实验室模拟进行研究。
页:
[1]